Impact of error estimation on feature selection

نویسندگان

  • Chao Sima
  • Sanju Attoor
  • Ulisses Braga-Neto
  • James Lowey
  • Edward Suh
  • Edward R. Dougherty
چکیده

Given a large set of potential features, it is usually necessary to find a small subset with which to classify. The task of finding an optimal feature set is inherently combinatoric and therefore suboptimal algorithms are typically used to find feature sets. If feature selection is based directly on classification error, then a feature-selection algorithm must base its decision on error estimates. This paper addresses the impact of error estimation on feature selection using two performance measures: comparison of the true error of the optimal feature set with the true error of the feature set found by a feature-selection algorithm, and the number of features among the truly optimal feature set that appear in the feature set found by the algorithm. The study considers seven error estimators applied to three standard suboptimal feature-selection algorithms and exhaustive search, and it considers three different feature-label model distributions. It draws two conclusions for the cases considered: (1) depending on the sample size and the classification rule, feature-selection algorithms can produce feature sets whose corresponding classifiers possess errors far in excess of the classifier corresponding to the optimal feature set; and (2) for small samples, differences in performances among the feature-selection algorithms are less significant than performance differences among the error estimators used to implement the algorithms. Moreover, keeping in mind that results depend on the particular classifier-distribution pair, for the error estimators considered in this study, bootstrap and bolstered resubstitution usually outperform cross-validation, and bolstered resubstitution usually performs as well as or better than bootstrap. 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement of effort estimation accuracy in software projects using a feature selection approach

In recent years, utilization of feature selection techniques has become an essential requirement for processing and model construction in different scientific areas. In the field of software project effort estimation, the need to apply dimensionality reduction and feature selection methods has become an inevitable demand. The high volumes of data, costs, and time necessary for gathering data , ...

متن کامل

Bridging the semantic gap for software effort estimation by hierarchical feature selection techniques

Software project management is one of the significant activates in the software development process. Software Development Effort Estimation (SDEE) is a challenging task in the software project management. SDEE is an old activity in computer industry from 1940s and has been reviewed several times. A SDEE model is appropriate if it provides the accuracy and confidence simultaneously before softwa...

متن کامل

Development of a Pharmacogenomics Model based on Support Vector Regression with Optimal Features Selection Approach to Determine the Initial Therapeutic Dose of Warfarin Anticoagulant Drug

Introduction: Using artificial intelligence tools in pharmacogenomics is one of the latest bioinformatics research fields. One of the most important drugs that determining its initial therapeutic dose is difficult is the anticoagulant warfarin. Warfarin is an oral anticoagulant that, due to its narrow therapeutic window and complex interrelationships of individual factors, the selection of its ...

متن کامل

Development of a Pharmacogenomics Model based on Support Vector Regression with Optimal Features Selection Approach to Determine the Initial Therapeutic Dose of Warfarin Anticoagulant Drug

Introduction: Using artificial intelligence tools in pharmacogenomics is one of the latest bioinformatics research fields. One of the most important drugs that determining its initial therapeutic dose is difficult is the anticoagulant warfarin. Warfarin is an oral anticoagulant that, due to its narrow therapeutic window and complex interrelationships of individual factors, the selection of its ...

متن کامل

Feature Selection Using Multi Objective Genetic Algorithm with Support Vector Machine

Different approaches have been proposed for feature selection to obtain suitable features subset among all features. These methods search feature space for feature subsets which satisfies some criteria or optimizes several objective functions. The objective functions are divided into two main groups: filter and wrapper methods.  In filter methods, features subsets are selected due to some measu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2005